Почему водородные автомобили проигрывают электромобилям?

О том, как еще далек от нас водородный автомобиль

  1. Что такое Водород
  2. H2 как альтернативное топливо
  3. Модели автомобилей на водороде
  4. Водород и проблемы с экологией
  5. Способы добычи водорода
  6. Планы компаний по развитию производства H2
  7. Сколько стоит производство водорода
  8. На сколько экономней водородный автомобиль?
  9. Как заправляют топливные элементы водородом
  10. Как работает топливный элемент заполненный водородом
  11. Где заправлять автомобили водородом?
  12. Расходы на содержание водородных станций
  13. Снижение стоимости водородных технологий за счет прогресса
  14. Получит ли «водородная программа» поддержку государства
  15. Итоги

Водород (H2) – это химический элемент, самый легкий газ получаемый из углеводородов, биомассы, мусора. Водород используют в нефтепереработке для гидроочистки, гидрокрекинга, для производства аммиака, при гидрогенизации угля, нефти и как альтернативный источник топлива (электроэнергии) для автомобилей. В автомобили ставят топливные элементы вместо бензобака, и заправляют туда H2 под давлением. При нажатии на педаль газа, в воздухозаборник поступает кислород, который вступает в реакцию с водородным элементом, отчего вырабатывается электричество. Электричество раскручивает электромотор, автомобиль начинает движение.

Преимущества и недостатки h2

H2 как альтернативное топливо

Чем интересен водород, как альтернативный источник топлива:

  • нулевые выбросы в атмосферу;
  • потенциал для внутреннего производства в странах, где нет нефтяных запасов;
  • быстрая заправка автомобилей (3-5 минут);
  • по расходу и цене, топливные элементы до 80 % эффективнее бензина;
  • электродвигатель питающийся от водородного топливного элемента, в два-три раза быстрее и экономичнее, чем двигатель внутреннего сгорания.

Преимущества водородных автомобилей над электромобилями:

  • скорость зарядки;
  • от полностью заправленного водородом топливного элемента на выходе электроэнергии больше, чем от полностью заряженной АКБ электромобиля. Т.е. машина на полностью заряженном водородном топливном элементе (FCEV-fuel cell electric vehicle) преодолеет большее расстояние, чем такой же электромобиль с полностью заряженной батареей.

Модели автомобилей на водородеавтомобили на водороде

Автопарк автомобилей на водороде к концу 2019 года превысил 25 тыс. машин, причем свыше 12 тыс. было продано за 2019 год. В основном парк расширяется в Китае, Японии, Республике Корея, хотя лидером по количеству водородных автомобилей остаются США.
Модели на водороде собирают Toyota, GM, Honda, Hyundai, Mercedes-Benz и продают в регионах с развитой сетью водородных заправок. Цена машин в районе 4-6 миллионов рублей - Toyota Mirai – 4 млн. руб., Honda FCX Clarity – 4 млн. руб.

Выпускают ограниченной серией:

  • Audi A7 h-tron quattro – электро-водородный гибридный легковой автомобиль.
  • Hyundai Tucson FCEV
  • Ford E-450.
  • Городские автобусы MAN Lion City Bus.

Испытывают:

  • Ford Motor Company – Focus FCV;
  • Honda – Honda FCX;
  • Hyundai Nexo
  • Nissan – X-TRAIL FCV (топливные элементы компании UTC Power);
  • Toyota – Toyota Highlander FCHV
  • Volkswagen – space up!;
  • General Motors;
  • Daimler AG – Mercedes-Benz A-Class;
  • Daimler AG – Mercedes-Benz Citaro (топливные элементы компании Ballard Power Systems);
  • Toyota – FCHV-BUS;
  • Thor Industries – (топливные элементы компании UTC Power);
  • Irisbus – (топливные элементы компании UTC Power).

Ограниченными сериями выпускаются BMW Hydrogen 7 и Mazda RX-8 hydrogen – двухтопливные модели использующие либо жидкий водород, хранящийся в баке при температуре не выше −253 °C, либо бензин. Принцип тот же, что и в автомобилях на газу. В отличие от FCEV двухтопливные модели выпускают вредные выхлопные газы, двигатели не такие мощные и быстрее изнашиваются.
На водородных топливных элементах (FCEV) конструируют спецтехнику: автобусы, погрузочно-разгрузочное оборудование (например, вилочные погрузчики), наземно-вспомогательное оборудование, средние и большие грузовики. Активно в этой сфере работает американская компания Plug Power Inc (PLUG). PLUG выпускает комплектующие для спецтехники на водороде. Недавно PLUG провела симпозиум, на котором заявила:

  • о покупке поставщика технологий, оборудования и услуг для сжиженного водорода Applied Cryo Technologies;
  • о строительстве в Австрии завода по производству литий-ионных аккумуляторов;
  • презентовала прототип фургона HyVia Renault Master Van на водородных топливных элементах.

Honda огласила цель по поэтапному отказу от бензиновых двигателей в Северной Америке к 2040 году.
Daimler Trucks и Volvo стали партнерами в Европе, чтобы попытаться снизить себестоимость FCEV и сделать водород выгодным для дальних перевозок.

Водород и проблемы с экологией

Водород обилен в природе. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения.
При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные выбросы. При этом, сам автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.

СПОСОБЫ ДОБЫЧИ ВОДОРОДА

  • паровая конверсия метана и природного газа;
  • электролиз воды;
  • газификация угля;
  • пиролиз;
  • частичное окисление;
  • биотехнологии;
  • паровой риформинг метана.

Паровой риформинг метана

Способ отделения водорода путем парового метанового риформинга применим к ископаемому топливу, например, к природному газу – его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики США утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем в бензиновых автомобилях. Производство реформированного водорода уже запущено на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.

Газификация биомассы

Водород также добывают из биомассы – сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс называемый газификация, биомассу помещают под воздействие температуры, пара, кислорода, чтобы образовать газ, который после обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов – готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Электролиз

Электролиз – процесс отделение водорода из воды электрическим током. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область – 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).
Солнечные водородные станции Honda используют энергию солнца и электролиз, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.

Планы компаний по развитию производства H2

В Токио, недалеко от Токийского залива, построили завод для получения водорода из сточных вод и мусора.
PowerTap планирует построить на водородных АЗС помещения с оборудованием для получения водорода из природного газа и городской воды. Оставшийся углерод будут улавливать, и хранить там же.
Ways2H Inc. огласила планы построить небольшие заводы по переработке водорода возле мусорных свалок. Формула успеха компании Ways2H Inc.: мусор + термохимический процесс = водород. Завод стандартного размера обрабатывает 24 тонны отходов в день, получая от 1 до 1,5 тонны водорода.

Сколько стоит производство водорода

По оценке Международного агентства по возобновляемым источникам энергии IRENA в 2019 году, стоимость 1 кг водорода получаемого за счет ветровой энергии составляла в среднем около 4 $, солнечной – почти 7 $, тогда как «загрязняющее» получение H2 из угля или газа обходится в 1,5–2,5 $. Даже с учетом технологии CCS (carbon capture&storage – технология улавливания, транспортировки и хранения углерода), получение H2 из угля не экологичней ветровой и солнечной энергии. С развитием «солнечных» технологий разница в цене между «чистым» и «грязным» способом добычи водорода исчезнет далеко после 2030 года.

На сколько экономней водородный автомобиль?

В Европе заправка полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 ₽ (717 ₽ за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 ₽ на 100 километров. Для сравнения, цена 95-го бензина в Европе равна 101 ₽, т.е. 10 л. бензина обойдется в 1010 ₽ или 6 060 ₽ за 600 километров [цены на 2018 год.] Из примера видим, что заправка водородного автомобиля в два раза дешевле, чем автомобиля с двигателем внутреннего сгорания.
В России активисты из г. Черноголовки Московской области, ради эксперимента сконструировали собственную водородную станцию, купили Toyota Mirai и посчитали, во сколько обойдется эксплуатация автомобиля. По расчетам владельца машины 100 километров на водороде ему обходится в 250 рублей.

Как заправляют топливные элементы водородом

В 1 килограмме газообразного водорода столько же энергии сколько в 1 галлоне бензина (4,5 литра = 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится в резервуарах высокого давления (топливных элементах) – 5000 или 10000 фунтов на квадратный дюйм (psi) (340 или 680 атмосфер), в виде сжатого газа. Водородные диспенсеры на заправках заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл-гидридом или низкотемпературными сорбционными материалами.

Как работает топливный элемент заполненный водородом

Как работает водородный автомобиль

Прокачивая кислород и водород через катоды и аноды, контактирующие с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что увеличивает напряжение.
Ниже смотрите схему работы топливного элемента.

как работает топливный элемент h2

Где заправлять автомобили водородом?

Карта заправочных станций здесь.
Революция FCEV не начнется без достаточного количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как альтернативного вида топлива Развитие сетей водородных АЗС идет туго.
В Америке самый большой автопарк FCEV моделей, с концентрацией в штате Калифорния. Заправок там достаточно, но начались проблемы с поставкой водорода. Водители повально отказываются от водородных автомобилей, столкнувшись с пустыми заправками. Подробнее здесь.

Расходы на содержание водородных станций

h2 азс

В 2004 году в Европе и США работало 168 000 бензиновых АЗС. Заменить обширную сеть бензозаправочных станций водородными в США обойдется в полтора триллиона $. При этом, к примеру, цена водородной топливной сети в Европе может быть в 5 раз ниже, чем цена заправочной сети для электромобилей (EV). Цена одной EV – станции от 200 000 до 1 500 000 рублей. Цена водородной станции – 3 миллиона долларов. При этом, водородная сеть будет все равно дешевле сети станций для электромобилей по окупаемости. Причина в быстрой заправке водородных автомобилей (от 3 до 5 минут). На миллион автомобилей на топливных водородных элементах требуется меньше водородных станций, чем зарядных станций на миллион электромобилей.

Снижение стоимости водородных технологий за счет прогресса

Еще одно препятствие для производителей автомобилей на водородном топливе – цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Покупали когда-нибудь колечко из платины для любимой? Цена Вам известна.
Ученые из Лос-Аламосской национальной лаборатории доказали, что замена дорогой платины на более распространенные – железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины, заметно снизит себестоимость топливных элементов. Параллельно ученые пытаются снизить себестоимость производства аккумуляторов для электромобилей, подробней здесь.
На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы эффективней заправлять топливный элемент большим количеством H2. В связке с передовым литий-ионным аккумулятором как дополнительным хранилищем энергии, это увеличит количество энергии на борту автомобиля. «Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км.» считает доктор Герберт Колер, вице-президент Daimler AG.

Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 % за последние три года и на 80 % за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить еще в два раза. Нынешние водородные топливные элементы, «живут» около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно продлить их жизнь до 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, стоит отсутствие оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам. Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, поэтому и проблем с поставкой запчастей к ним нет. «Мы внедряем «водородную технологию» в люксовые автомобили и следим, как она себя показывают «в народе». Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

В 2005 году канадский производитель протон-обменных топливных элементов, обещал, что к 2010 году будет продавать автокомпаниям от 200 000 до 500 000 топливных элементов в год. Цель так и не была достигнута, топливные элементы в таком количестве заводам были не нужны.

В 2009 году несколько производителей автомобилей подписали совместное письмо о намерениях к 2014 году продавать сотни тысяч автомобилей с водородным двигателем. Этого тоже не произошло.

Получит ли «водородная программа» поддержку государства

Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.

С министром энергетики Стивеном Чу, администрация Обамы не раз пыталась сократить финансирование программы развития водородных топливных элементов, но сокращения отменял конгресс.

Популярность электрических автомобилей сторонникам водорода кажется абсурдной. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель Honda. Аккумулятор, разработанный для Honda FCX, например, устанавливают и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии, возглавив список самых экономичных машин этого десятилетия».

Недовольны и те, кто платит из своего кармана за строительство новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородное топливо и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro. SunHydro строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Инвесторы в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».

В России Правительство в 2020 году утвердило план по развитию водородной энергетики в Российской Федерации до 2024 года. В нем говорится:

  • о намерениях господдержки производителей водорода, с целью в последующем наладить продажи за границу;
  • развитие H2 АЗС;
  • стимулирование внутреннего спроса на водородоносители за счет развития транспортной инфраструктуры на водороде.

ПОДВЕДЕМ ИТОГИ:

Минусы водородного топлива:

  • добыча водорода пока не совершенна и загрязняет окружающую среду;
  • создание сети водородных заправочных станций дорого (полтора триллиона $ только для США);
  • владельцы машин привязаны к заправочным станциям в своем городе, штате – деревню к бабушке не съездишь.

Плюсы водородного топлива:

  • у водородных автомобилей нулевой уровень выбросов, бережем природу;
  • быстрая заправка – от 3 до 5 минут;
  • экономически водород выигрывает у бензиновых автомобилей по цене расхода топлива (600 км за 3 369 рублей на водороде против 6 060 рублей за путешествие на бензине).

Рейтинг: 

© Все права защищены

Комментарии

tag (не проверено)
К таким, по-сути(из-за низкой производительности), индивидуальным заправкам неплохо бы "прикрутить" ветрогенераторные, а где возможно, гидрогенераторные(лучше типа "геликоида" Горлова), термоэлектрические, геотерм-электрические и прочие, контекстно "экологичныные", альтернативные источники "грязного"(нестандартного) электричества для существенной "подгрузки" электролизёра с выходом на коммерческую реализацию сжиженных водорода и кислорода.
Аркадий (не проверено)
Всё это беспредметно. Сколько на сегодня стоит 100км. пробега на водороде?
administrator
527 рублей на 100 км. Это по информации 2015 года. Почем водород на сегодняшний день, я не нашел.
гость (не проверено)
Использование водорода в качестве топлива (экономическая эффективность). Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2г) и 0,5 моль O 2 (16г) при стандартных условиях и возбудить реакцию, то согласно уравнению Н 2 + 0,5 О 2 = Н 2 О после завершения реакции образуется 1 моль 1 моль H 2 O(18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана — 2200 кДж/моль). 1 м 3 водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м 3 водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м 3 газа, можно делать вывод о целесообразности перехода на водородное топливо. Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H 2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1 м 3 для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.
Макс (не проверено)
Во-первых, на оптовом рынке цена электроэнергии ну никак не 10 центов за кВт. Во-вторых, причём тут энергия сгорания? Вроде же в статье чётко написано, что в результате химической реакции выделяется электроэнергия и вода. А сжигание используют не все производители авто и в статье сказано, что сжигание не эффективно...
Вадим (не проверено)
А где 95й бензин стоит 101 рубль?
administrator
Например в Германии 1.53 EUR или 131 рубль по сегодняшнему курсу.
Владимир (не проверено)
Главный вопрос в этой теме должен быть не эффективность, а безопасность использования, экология. Самая безопасная была кобыла, но всего 1 л/с, потом бензин, дизельное топливо, газ, теперь водород. Если авто на газе взрываются, то что будет в варианте с водородом? От газа систематически взрываются дома, гибнут люди. А ведь есть безопасная электроэнергия. Будущее не за водородом, а именно за электроэнергией и это будущее уже близко!

Добавить комментарий (появится после одобрения администратора)

-->