История появления системы зажигания в автомобиле [виды, схемы устройства в картинках]
От чего заводится автомобиль и как к этому пришли
Благодаря системе внутреннего сгорания двигателя автомобиль везет пассажиров из пункта А в пункт Б. Разберемся, что "зажигает огонь" в двигателе, заставляя работать как часы.
Коротко о том, как работает двигатель внутреннего сгорания
Сердце автомобиля — двигатель внутреннего сгорания. В двигателе стоят поршни, которые двигаются по цилиндру вверх и вниз. Двигаясь вверх и вниз, поршни вращают коленчатый вал, который передает силу кручения на колеса. Раскрученные колеса двигают автомобиль. Подробнее, о том, как работает двигатель внутреннего сгорания, читайте тут.
За счет чего вращаются поршни?
Чтобы двигатель внутреннего сгорания начал работать, в цилиндре, где работают поршни двигателя, происходит детонация за счет микровзрыва воздушно-топливной смеси. За счет детонации поршни двигаются вверх-вниз. С разными видами топлива — дизель или бензин — детонация происходит по-разному.
В дизельном двигателе, при опускании поршня в цилиндр всасывается воздух - "вдыхание воздуха цилиндром" - затем поршень поднимается, сжимая воздух, чем нагревает его до 700-800 С. На пике поднятия поршня в цилиндр запускается дизельное топливо, которое тут же нагревается и выпускает пары, которые от температуры детонируют и опускают поршень вниз. Так энергия, созданная взрывом, превращается в механическую энергию, которая передается через движение поршня на колеса машины.
В бензиновом двигателе воспламенение и детонация происходят не от нагнетания воздуха, а от искры, создаваемой свечей зажигания. В цилиндр поступает смесь воздуха и бензина, которая при подъеме поршня воспламеняется искрой свечи и происходит детонация опускающая поршень вниз.
Перейдем к истории и разберемся, как возникла система зажигания и какие изменения пережила
Первые двигатели внутреннего сгорания, которые появились более столетия тому назад, использовали для воспламенения воздушно-топливной смеси раскаленную калильную головку. Смесь топлива с воздухом воспламенялась в конце такта сжатия от раскалённой калильной головки, которая стояла над цилиндром. Перед запуском калильная головка разогревалась древесными углями в корзинке прикрепленной к двигателю или паяльной лампой. Далее температура калильной головки поддерживалась сгоранием топлива при работе двигателя.
Пока поршень проходил цикл вращения сверху вниз, после детонации, камера была заполнена отработанными газами, из-за чего смесь не воспламенялась. Но как только поршень поднимался наверх до «мертвой точки», в цилиндр запускался обогащенный кислородом воздух и смесь воспламенялась от нагретой калильной головки.
Недостатки такой системы были в:
- низком КПД из-за низкой степени сжатия и плохой продувки свежим воздухом;
- нестабильности температуры калильной головки — при малой нагрузке, или холостых оборотах температура калильной головки падала и качество детонации ухудшалось, а при высоких нагрузках головка перегревалась, что снижало мощность и истощало ресурс работы двигателя;
- перед запуском калильную головку требовалось разогревать 10-15 минут.
Особенности индукторной (англ. Magneto) и батарейной системы зажигания
Инженеры начали усовершенствовать систему зажигания — так вместо калийной головки появилась электрическая искра. Основными источниками возникновения искры стали индукторная и батарейная системы зажигания. По способу получения искры батарейное зажигание принципиально не отличается от индукторного.
Индукторное зажигание
Индуктор — это пассивный электрический компонент, состоящий из катушки проволоки обмотанной вокруг куска железа. Индуктор нужен, чтобы посредствам создания магнитного поля, задерживать ток в цепи и накапливать энергию в создаваемом в результате прохождения тока через индукционную катушку, магнитном поле.
Уже к 1902 году Бош изобрел индуктор со встроенными катушками, контактным выключателем и высоковольтными свечами.
В индуктивном зажигании искра создается посредством накопления тока в индукционной катушке. Ток в катушке накапливается, подача тока прерывается и катушка резко отдает накопленную энергию, в результате создавая искру воспламеняющую смесь в цилиндре двигателя.
Катушка зажигания
Катушка состоит из магнитопровода или мягкого провода, или листа, и двух электрических обмоток, называемых первичной и вторичной обмотками. Первичная обмотка имеет обычно 200-300 витков, ее конец соединен с внешним выводом. Вторичная обмотка имеет почти 21000 витков медного провода, который изолирован, чтобы выдерживать высокое напряжение. Он расположен внутри первичной обмотки, и один его конец соединен со свечой, а другой конец заземлен либо на первичной обмотке, либо на металлическом корпусе. Весь этот блок заключен в металлический контейнер, что делает его компактным.
Катушка — основная часть системы зажигания от аккумулятора. Целью катушки зажигания в повышении напряжения аккумулятора (6 или 12 Ватт) до высокого напряжения, которого достаточно для создания искры свечой.
Катушка зажигания приводится в действие непосредственно от источника 12 вольт. Когда катушка подключена к аккумулятору, индуктор «заряжается» током. Чтобы создать магнитное поле току требуется несколько миллисекунд — это из-за обратного напряжения, вызванного увеличением магнитного поля. За короткий период зарядки на высоковольтной клемме образуется тысяча вольт, что недостаточно для образования искры.
Сама искра возникает, когда размыкаются контакты выключателя.
Резкое изменение тока вызовет скачок высокого напряжения на катушке. Изменение тока происходит на первичной обмотке, но поскольку первичная и вторичная обмотки имеют большую взаимную индуктивность, вы получите скачок порядка 100 или более вольт на первичной, и 10000 вольт на вторичном. Даже скачок на первичной катушке проволоки может немного тряхануть вас, если вы держите провода при отключении питания.
В двигателе с четырьмя или более цилиндрами высоковольтный вывод катушки соединен с распределителем — высоковольтный вращающийся переключатель-«бегунок», для выбора, к какой из искр подключить катушку. Это намного дешевле, чем иметь одну катушку зажигания для каждого цилиндра. Существуют двухискровые катушки подающие искру на два цилиндра, где каждый конец катушки зажигает две свечи одновременно. Это экономит ресурс работы свечей, но снижает срок жизни катушки и может привести к взрыву глушителя, если водитель долго не может завести автомобиль и подолгу прокручивает стартер.
Магнето
Это основная часть системы зажигания индуктивного типа — источник энергии. Магнето — это небольшой электрический генератор, который вращается двигателем и способен генерировать очень высокое напряжение и не нуждается в батарее в качестве источника внешней энергии. Магнит содержит как первичную, так и вторичную обмотку, поэтому ему не нужна отдельная катушка для повышения напряжения, необходимого для работы свечи. Магнето бывает с вращающимся якорем и с вращающимся магнитом. В первом типе якорь вращается между неподвижным магнатом. Во втором типе якорь неподвижен, а магнаты вращаются вокруг якоря.
Ford использовал магнето для подачи искры - с 1909 по 1927 гг. Технология питания искры от магнето сохранилось до сих пор — например, в поршневых авиационных двигателях. Это те, которые стоят в самолетах с пропеллером. Магнето также ставят в двигателя маленького объема, чтобы не использовать громоздкий аккумулятор – переносные бензогенераторы, бензопилы, газонокосилки. Магнето запускается в них, когда вы дергаете за шнур раскручивающий магнето. Недостаток индукторной системы в зависимости от оборотов двигателя.
Работа системы зажигания магнето
Принцип работы магнитной системы такой же, как и у системы зажигания от батареи, за исключением того, что в магнитной системе Магнето используется для выработки энергии, вместо батареи. Схема четырехцилиндровой магнитной системы зажигания следующая.
МАГНИТНАЯ СИСТЕМА ЗАЖИГАНИЯ
- Сначала при запуске двигателя или при вращении двигателя вращается магнит, который генерирует очень высокое напряжение;
- Конденсатор зажигания подключен параллельно с контактным прерывателем. Один конец обмотки магнитопровода также заземлен через прерыватель контакта;
- Кулачок регулирует размыкатель контакта. Везде, где выключатель разомкнут, ток течет в конденсатор заряжая его;
- Когда конденсатор становится зарядным устройством, первичный ток падает, а магнитное поле разрушается. Это вызовет высокое напряжение в конденсаторе;
- Теперь эта высоковольтная электродвижущая сила пробивает искру на свече зажигания через распределитель.
Поскольку частота вращения двигателя при запуске низкая, ток, генерируемый магнитом, довольно мал. По мере увеличения частоты вращения двигателя поток тока также увеличивается. Так, с магнитной системой зажигания всегда есть проблема запуска двигателя, а иногда нужна и отдельная батарея. Эта система лучше всего подходит для высокооборотистых двигателей, поэтому она ставиться в гоночных автомобилях, авиационных двигателях и т.д.
В "классике" индуктивное зажигание, где источник питания магнето, запускается вручную — когда дергаешь бензопилу или заводишь машину вручную крутя "кривой" ключ.
Преимущества:
- Эта система более надежна на средних и высоких скоростях;
- Аккумуляторная батарея не нужна;
- Требует реже технического обслуживания.
Недостатки:
- Проблемы с запуском из-за низкой скорости вращения при запуске;
- Дороже по сравнению с системой зажигания аккумулятора;
- Существует вероятность пропуска зажигания из-за утечки, потому что проводка несет высокое напряжение.
Батарейное зажигание
В 1910 году Кеттеринг представил миру альтернативу в виде батарейного зажигания.
Система имеет 6- или 12-вольтовую батарею, заряжаемую генератором с приводом от двигателя для подачи электроэнергии; катушку для увеличения напряжения; устройство для прерывания тока от катушки; распределитель для подачи тока в правильный цилиндр; свечу, в каждом цилиндре. Ток идет от батареи через первичную обмотку катушки, через прерыватель и обратно к батарее.
Батарея — источник энергии для зажигания, работающий в качестве накопителя энергии, получаемой от генератора, приводимого в движение двигателем. Он преобразует механическую энергию в электрическую энергию. В системе искрового зажигания используют аккумуляторы двух типов: свинцово-кислотные и щелочные. Первый в легком транспорте, в электропогрузчиках, а другой - в тяжелом коммерческом транспорте, в оборудовании локомотивов и вагонов для пассажиров. Аккумулятор соединён с первичной стороной катушки зажигания.
Как заводится автомобиль?
Итак, еще раз. Аккумулятор содержит заряд. Он подает ток на первичную катушку. Катушка создает магнитное поле, за счет чего во вторичной катушке образовывается мощный заряд. Прерыватель обрывает цепь, и скопившаяся энергия на катушке пробивает искру в свече через провод высокого напряжения созданной электродвижущей силой (ЭДУ). Свеча воспламеняет смесь воздуха и топлива в цилиндре, поршни начинают вращаться, двигатель работает. За счет механической энергии вырабатываемой двигателем, вращается генератор вырабатывающий за счет движения ток. Ток заряжает аккумулятор, чтобы завести машину в очередной раз и питает вторичные системы машины типа фар, мультимедиа, обогревателя.
Преимущества:
- Во время запуска машины или при низкой скорости доступна хорошая искра;
- Батарея, кроме генерации искры, питает фары, мультимедиа, кондиционер и т.д.;
- Низкие затраты на техническое обслуживание.
Недостатки:
- Контактный прерыватель подвергается как электрическому, так и механическому износу (быстрое окисление (подгорание) и износ контактов), что снижает интервал технического обслуживания;
- При очень высокой частоте вращения двигателя производительность снижается из-за влияния инерции движущихся частей системы;
- Занимает больше места.
Разница между системой зажигания аккумуляторной батареи и системой магнитного зажигания:
S.No. | Система зажигания батареи | Система магнитного зажигания |
1. | В этом типе системы | В этом типе системы аккумулятор не нужен. Тут свой собственный электрический генератор |
2. | Не заведешься, если батарея разряжена. Что делать, читайте здесь | Нет такой проблемы, потому что батарея не используется |
3. | Требует большего ухода из-за батареи | Требуется меньше ухода |
4. | В системе зажигания аккумулятора ток для первичной цепи получается от аккумулятора | В системе магнитного зажигания необходимый электрический ток генерируется магнитом, который является электрическим генератором |
5. | Сила искры не зависит от скорости двигателя, так как ток | Сила искры зависит от скорости двигателя из-за магнето |
6. | Хорошая искра доступна на низкой скорости | Во время запуска или на низкой скорости качество искры низкое |
7. | Эффективность системы уменьшается с уменьшением интенсивности искры при увеличении частоты вращения двигателя | Эффективность системы повышается при увеличении частоты вращения двигателя из-за высокой интенсивности искры |
8. | Аккумуляторная система занимает больше места | По сравнению с аккумуляторной системой, магнитная система зажигания требует меньше места |
9. | Обычно стоит в автомобилях и легких коммерческом транспорте | В основном стоит в гоночных автомобилях, двухколесном транспорте, бензопилах, лодочных двигателях |
Электронное зажигание
Высокие обороты двигателя нуждаются в мощной искре, а при большей нагрузке на двигатель и низких оборотах подача искры должна снижаться. Отсюда выходит, что уровень подачи искры нуждается в регулировании. К 1930-м гг. появились новые достижения в сфере зажигания — автоматические центробежные регуляторы, которые регулировали обороты двигателя, и вакуумные регуляторы, отвечающие за нагрузку на двигатель.
Электроника не торопилась вторгаться в систему зажигания автомобилей. Компания DELCO (Dayton Engineering Laboratories Company) предложила автоматическое зажигание еще в 1948 году. В 1955 году Lucas Industries представил миру контактно — транзисторное зажигание (КТСЗ). Мало-помалу, автопроизводители начали предлагать контактно-транзисторные устройства зажигания, устанавливая их на дорогие комплектации автомобиля.
Система зажигания шагнула далеко вперед. Сейчас, датчики Холла распознают частоту вращения коленчатого вала. Другие датчики определяют соотношение воздуха к топливу и обороты двигателя — два основных элемента зажигания. Сенсорные датчики детонации прислушиваются к зарождению взрыва, их сигналы синхронизируют работу цилиндров и появление искр зажигания.
Мы подошли к описанию электронного зажигания или безконтактного
Электронная система зажигания точнее рассчитывает время зажигания, чем механическая система. Она запрограммирована для точной синхронизации зажигания на всех рабочих скоростях, от холостого хода до полной мощности. Каждый раз это обеспечивает легкий запуск и оптимальную топливную эффективность, за счет автоматического ограничения максимальных оборотов двигателя.
В электронном зажигании нет прерывателя. Система работает на основе разряда конденсатора. Отличия в том, что в обычном зажигании конденсатор, запитанный параллельно прерывателю, уменьшает искрение, а при электронном оно выверенное.
Плюс электронного зажигания в том, что искра получается мощнее, ее сила регулируется электронным блоком управления, который руководствуется температурой воздуха, двигателя, оборотами двигателя. Смесь в цилиндре сгорает эффективнее, топливо расходуется экономнее.
Сейчас функция зажигания в автомобиле полностью возложена на систему электронного блока управления (ЭБУ) двигателем.
В системе управления двигателем (EMS) электроника управляет подачей топлива, моментом зажигания и порядком запуска. Основными контролируемыми моментами в системе являются угол наклона двигателя (положение кривошипа или положение верхней мертвой точки (ВМТ)), поток воздуха в двигатель и положение дроссельной заслонки. Схема определяет, для какого цилиндра нужно топливо и сколько, открывает необходимый инжектор для его доставки, а затем в нужный момент зажигает искру. В системах EMS для достижения этого используются схемы аналоговых компьютерных схем.
Некоторые конструкции, использующие EMS, сохраняют оригинальную катушку, распределитель и свечи зажигания, которые встречались в автомобилях 20-30-х годов. Другие системы обходятся без распределителя и катушки и используют специальные свечи, каждая из которых содержит собственную катушку (прямое зажигание). Т.е. высокие напряжения не распределяются по всему двигателю, а вместо этого создаются в точке, в которой они необходимы. Такие конструкции более надежны, чем классические системы зажигания.
Современные EMS обычно следят и за другими параметрами двигателя: температура, количество несвязанного кислорода в выхлопе. Это позволяет им управлять двигателем, чтобы минимизировать не сгоревшее или частично сгоревшее топливо и другие вредные газы, что приводит к более чистый и более эффективной работе двигателя.
За что отвечает ЭБУ помимо управления системой запуска автомобиля:
- контролирует и оптимизирует количества воздуха и топлива, поступающих в двигатель;
- контролирует и оптимизирует уровень выхлопных газов;
- учитывает температуру двигателя при холодном запуске и другие условия эксплуатации:
- контролирует плавность переключения передач;
- взаимодействует с рулем, тормозной системой и автомобильной подвеской в силу работы электронного контроля устойчивости автомобиля.
Базовые основы аккумуляторного зажигания сохранили до сих пор. Однако теперь, каждая свеча часто имеет свою, плотно прилегающую к ней катушку, что делает работу свечи эффективней и долговечней за счет минимизации высоковольтных путей.
Будущие идеи в совершенствовании системы зажигания автомобиля
Сейчас разрабатывается идея, где детонация будет происходить не от искры, а от луча лазера. Потенциал этой идеи состоит в том, что снизится, габариты воспламенителя и повысится эффективность искрового разряда и надежность зажигания.
Если у вас остались вопросы по статье или увидели недочеты, оставляйте их в комментариях.
Комментарии
Добавить комментарий (появится после одобрения администратора)